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Abstract-A finite deformation theory of plane strain is formulated for transversely isotropic, homogeneous
bodies with nonlinear stress-strain law. A new set of simplified field equations, which is valid in the case of
some deviations from Hooke's law, is derived systematically with the help of the method of order estimation,
For illustration purposes, a circular hole in a body under generalized plane strain is considered, together with
the solution of an example problem by perturbation techniques.

I. INTRODUCTION

In connection with the design of structural members, finite or large deformation theory based
on nonlinear continuum mechanics has played an important role in the determination of the stress
field for the range of large deformations, Because it is often difficult to find an explicit solution of
a given three-dimensional problem, there are many papers for the studies of elastic or plastic
bodies under their analogues in two dimensions [1-4]. However, most of these studies are
confined to the treatments based on the physically nonlinear and geometrically linear theory,

Green and Adkins[5] dealt with the large deformation theory of elasticity, Their theory is
valid for geometrically nonlinear ranges, but it is difficult to apply their theory dir~ctJy to the
problem of general compressible materials.

In most of these works, however, materials are assumed to be isotropic. A number of
materials of interest to engineers exhibit nonlinear mechanical effects, even when sustaining
small deformations. These effects are frequently thought to be due to anisotropic properties of
materials. In order to get a better understanding of the actual phenomena, not only physical and
geometrical nonlinearities but also anisotropy of material should be taken into account.

When the deformation is infinitesimal, i.e. when the nondimensional stress components are
sufficiently small, the linear stress-strain law is valid with good accuracy. If the nondimensional
stress becomes relatively large, the second and the higher order terms can not generally be
neglected. In the study based on the physically nonlinear and geometrically linear theory, the
nonlinear terms are taken into account in the stress-strain law, but the corresponding nonlinear
terms are omitted in the other field equations. Such a theory may be valid if the deformations are
very small and also if the values of the coefficients in the stress-strain law are suitably chosen,
but it does not necessarily give satisfactory results for materials with arbitrary nonlinear
stress-strain law. Accordingly the general finite deformation theory is to be required.

The present investigation is concerned with the simplified theory for homogeneous,
transversely isotropic bodies under generalized plane strain in the case of some deviations from
Hooke's law for the range of finite deformations. In this paper, however, we confine our attention
to the case in which the deformation is smooth. First, the definition for the generalized nonlinear
plane strain is proposed which is consistent with the usual infinitesimal theory and also with the
three-dimensional finite deformation theory. Any simplified nonlinear theory of continuum
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mechanics is necessarily an approximation from the general finite deformation theory. In the
process of simplification of the theory it may be unreasonable to make intuitive choice of several
terms which constitute the basic equations. Possible systematic formulations should be employed
in deriving the simplified theory. Here the method of the simplification employed in deriving the
nonlinear thin shell theory[6] is applied to the finite deformation theory of the generalized plane
strain problem. The maximum for the magnitude of the strain is denoted by 0 ()'). A consistent
approximation with the general theory is made by taking all terms larger than 0 ()'3) in the
compatibility equations. The differential equations obtained are simple but different from those
by the previous authors[I-4] in the sense that stress functions defined for the in-plane stresses
are coupled with a stress function for the anti-plane stresses.

Secondly, a circular hole in a body subjected to both uniform tension and uniform longitudinal
shear is considered for illustration purposes. It is true that nonlinear material constants which
constitute the nonlinear terms in the nonlinear stress-strain relations should be determined from
tension and shear tests in the manner of Orthwein[7], but these constants are determined under
some reasonable suppositions which are consistent with the problem considered. These
suppositions are employed because a set of appropriate experimental data is not at hand.

In the definition and relations of Sections 2-8, the Latin indices range over 1-3, whereas the
Greek indices have the range 1, 2 unless stated otherwise.

2. DEFINITION OF THE GENERALIZED PLANE STRAIN

We consider a body to undergo a deformation in which a point initially at Xi referred to fixed
rectangular cartesian coordinates moves to Xi in the same coordinates. The convected curvilinear
coordinate system gi is chosen so that t = Xl.

The metric tensor of the undeformed body is given by

(2.1)

where 8 ij denotes the Kronecker delta.
In the following the surface e constant shall be called the plane, and the stresses on that

plane shall be simply called the in-plane stresses.
It is convenient to introduce the following stress tensors [11]

(2.2)

where the comma denotes the partial differentiation with respect to X\ and T' is the stress
vector, per unit area of undeformed body, associated with a surface in the deformed body, whose
unit normal in its undeformed position is NrX~r.

In the following the symbol "0" will be used in the conventional sense except that
dependence on the complementary energy function W is permitted [8]. That is, the relation
A = o(B), where B ~ 0, means that for a given complementary energy function W there exists a
positive number K such that lA' ~ KB.

We denote the maximum "length" of the strain measure )'ij by )' = max tV)' 'j)'Ji)t, where
)'ij = )'kjA ki.

For convenience of proceeding with an argument, we introduce a mixed tensor defined by

(2.3)

ty',y',;:;: 0 for y', real.
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It should be noted that the mixed tensor Si j is discriminated from s i j = S ikakj, where akj is the
covariant metric tensor of the deformed body.

DEFINITION: A body is said to be in the state of the generalized plane strain if it deforms by
the application of external forces such that the deformation is independent of ewithin the error
which is of 0 (l) at most, and if the complementary energy function W satisfies

IIW(s'j)11 = O(llsijW)

II~~II = O(llsijlD

(2.4a)

(2.4b)

where the symbol "llsijll" denotes the L 2 norm of the function Silo
The requirements imposed on the definition of the generalized plane strain are more general

than those proposed by Green and Adkins [5] in the sense that the displacement component such
as y3 is not necessarily neglected in the definition of the plane strain. It is worth while noting that
the requirement such that y3 'f 0 is more consistent with the general finite deformation theory.

By the definition the displacement can be written in the form;

x k
= X· + yk(X I

, X 2
) +0(-/)

yk,3 = 0('/).

(2.5a)

(2.5b)

The strain tensor yi) in the state of the generalized plane is found from (2.5) and from the
definition of the generalized plane strain as follows:

1 - 3
Ya3=Z Y3.a +O(y)

y33 = 0 (y3).

(2.6a)

(2.6b)

(2.6c)

Now it is assumed that the displacement yi and its first and second derivatives may be finite
but their least upper bound is fairly small compared with unity. A consistent approximation with
the general finite deformation theory is made by taking all terms larger than 0 (y3) in the final
differential equations.

3. COMPATIBILITY EQUATIONS

We shall state the compatibility equation for the generalized plane strain problem. This
equation can be obtained from the condition that the Riemann-Christoffel tensor 'ijkl of the
deformed body vanishes identically. In our coordinate system the condition 'i)kl = 0 gives the
following relation between the strain components[12]:

(3.1)

where E imn is the three dimensional permutation tensor. Here the tensor Nmnpq is given by
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T mqs = Y{mq.s}

(3.2)

(3.3)

where we have introduced the notations such that

Y{mq,sl = - Ymq.s + Yqs.m + ysm.q (3.4a)

(3Ab)

and aSf is the contravariant metric tensor of the deformed body. By the definition of the
generalized plane strain (3.1) is rewritten in the form:

J(a(3) = - TK3>.TK3 >.Oa(3 + Ta3.T(33). +o(l) (3.5a)

J<a3) = Ta3p.p - Ta3>.Tpp>. + Tp3.T"". + 0(y
3
) (3.5b)

1
J(33) = Ypp.aa - yap,ap +2' (Yaa.>. ypp,>. - 4Yaa,>.YP'.P +4Ya•.aYPA.p + 2Y"'P,AY",'.p - 3Yap.AY"'P.A)

+2Y3a,,,Y3p.p - y3".py3a.p - Y3O<.pY3p." + 0(y
3
) (3.5c)

where 0,,(3 is the Kronecker delta.
It is easily found from (3.5) that (3.1) is reduced to

E
aPYa3.p = 0(y3) (3.6)

J(33)=0(y 3) (3.7)

where E
ap is the two-dimensional permutation tensor.

Equations 0.6) and (3.7) provide a set of compatibility equations for the body under
generalized plane strain.

4, CONSTITUTIVE EQUATIONS

For an elastic material which is homogeneous and transversely isotropic in the constrained
state, the constitutive equations can be derived by (10]

(4.1)

where W is a complementary energy function expressed in the form:

(4.2)

Here Si, i = 1,2, .. ,5 are the five stress invariants for the transverse isotropy with respect to a
direction which is parallel to the X 3-axis. In our coordinate system they are given by

(4.3)

We restrict our attention to the compressible material. Following the same notations as John (8],



Asimplified nonlinear theory of the generalized plane strain

we can write

s> o(S) = O(y)

where S is the maximum "length" of the stress tensor Sij defined by

S2 = max (tjs j
.).

x'
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(4.4)

(4.5)

For monotonically increasing loads, at first the linear stress-strain relation exists, then with
continuously increasing loads the deformation gradually changes. It can be assumed that the
complementary energy function is an analytic function of these stress invariants in the
neighbourhood of Sj = 0, i 1,2, .. ,5, and therefore it can be expanded in the form:

W= aisl + a2S2 + a3S3 + a4S4 +asss +a6s,z +a7s/ +ass/ +a9s/ + alOSISZ +allS'S3 +al2S,S4
+ aI3S'S.s + a14SZS4 +a,sszss + a'6S3S4 + a17S4SS +alSs/ +a'9s43+azos/sz +aZls,zs4 +azzs/ss
+ a23s,s/ + aZ4sZs/ +azss/ss + aZ6s,4 + a27s/ +a28s/s42+ a29s13

S4 + a30s1s/ +o(ss)
(4.6)

where az, as, a6. as and al2 denote the linear material constants, whereas the others mean the
nonlinear mater' al constants.

If we restrict our attention to a body which is unstressed before deformation, it is found that
a, = a4=O.

Substituting the series (4.6) into (4.1), we obtain

Y"'13 = (2a6s, + alOS2 + al2S4 +al3ss +3a,ss/ +2a21sIs4 + a23s/)013 '" +2s,t (a2 + alOSI +a'4s4)
+ 3a3Sm"'Sl3m+O(y3) (4.7a)

y~ = (2a + as)s3'" +{2alO+ a13)s, +(2a14 + a17)s4}s3'" +3a3Sm"'S3m +o(l) (4.7b)

y33= (2a6 +al2)s, + (al2 +2a2 +2aS)s4 + (alO + a14)s2 +(al3 +3a3 +adss +(3alS + a21)s,2
+(2a21 +2alO +2aZ3)sls4 + (a23 +2a14 +3a3 +3a19)s/ + 0 (y3). (4.7c)

For the sake of compactness let us put

Equations given by (4.7) are the constitutive equations for the generalized plane strain based on
the finite deformation theory. They contain 14 constants.

5. STRESS FUNCTIONS

It is easily found from (2.1) that stress tensor t ij and s ij are connected by the relation [11 )

t ij
= SiT(O/ + V~T)' (5.1)

The equations of equilibrium for the exact three-dimensional theory in the absence of body
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forces are given by
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t/' = O. (5.2)

By the definition of the generalized plane strain, (5.2) can be written in the form:

t~,'=0(S3)

t:'! = O(S').

Here we introduce the stress functions F, G and <P defined by

(5.3a)

(5.3b)

(5.4a)

(5.4b)

By the introduction of these stress functions (5.3) is satisfied identically within the error which is
of o(s') at most.

When the deformation is ,very small, the linear theory is valid. If we neglect the rigid body
motion, the in-plane strain components Ya[3 of order 0 (y) and the in-plane rotation Waf> of order
o(y) are expressed in terms of the stress function F as follows:

where

ya(3 AF.pp8a(3 + DS€"p€[3AF.pA + 0(y2)

V1a.J--l\ = WaJ--l = €a(3f +0(y2)

f = -(A + Ds)Q

- I - 
V\a.[3] = 2[Va.(3 - V[3.a]

(5.5a)

(5.5b)

(5.6)

(5.7)

and where Q is a conjugate function with F.pp in the sense of Cauchy-Riemann. If the function
F.w is known, its conjugate Q is easily determined except for the constant.

From (5.5) we obtain

(5.8)

With the aid of (5.1), (5.4), (5.8), stress components s i, are given by

(5.9a)

s"f3 = F:p8
a (3

+o(s').
F."f3 - AF\F:p8a(3 +AF:pF.,,[3 + €apG~+D5F.apF~ D5F~pF:"8a(3 + €a"F~.[

(5.9b)

Since Sii is a symmetric tensor. it follows from (5.9bl that

(5.10)

When we determine the stress field of the generalized plane strain, (5.10) becomes an auxiliary
equation.
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From (2.6c), (4.7c), the stress component g33 is obtained as follows:

where

where

At = 2a6+ al2, A2= 2a2+2as+ al2, A 3= alO+ a14, A4= 3a3+ al3+ a17,
As = 3alS + a21, A6= 2(alO + a2t + a23), A 7 = 3a3 + 2al4 + 3a19 + a23.

Substituting (5.9) into (5.11), we obtain
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(5.11)

(5.12a)

(5.12b)

With the aid of (5.9), equations (4.7) can be replaced by

"1af3 = (BIF~p + B2F~pF~K+ B3F:pF~A + B4<1>.p<l>.P)5af3 + B6F~pF.af3 - BsF.af3
+ B7F:aF,Af3 + BsEapG~f3 + BSEaKF~f3f - Bs<I>.a <I>.f3 + o("1 3)

"1a3 = D6EaP <l>,p + B9EaP <l>.pF\ + BIOEAK<I>'KF.aA + 0("13)

where

(5.14a)

(5.14b)

B t = D1 +C1D3 ,

B2= D3(C4 - ACt) - D2A + alOC/ + 2a21cI(l + CI) + a23CI2+ 3als(l + CI)2
- Ds(A + Ds)+ 2alO + 2CI(alO + at4) + 3a3,

B3= c2D3- CID3Ds- D2Ds+ a10, B4= D2c3 + 2alO + (D3- D2)C4 + al3 + 3a3'
Bs = Ds, B6= Ds(A + 2Ds)-2alO-2ct(alO+ aI4)-6a3, B7 = 3a3'
Bs = 3a3' B9= - 2D6

2+ 2alO + al3 + 3a3 + Ct(2alO + al3 + 2al4 + a17 + 3a3),
B IO =2D/-3a3. (5.15)

6, DIFFERENTIAL EQUATIONS IN TERMS OF STRESS FUNCTIONS

The compatibility equations expressed in terms of stress functions are derived by substituting
(5.14) into (3.6) and (3.7). They are

F~:A + MIF~PAF~: + M2F:PKF~: + M3F~AF~KAp + M4EaK(F~pJ.a + F~J.ap)+ MS<l>~K<I>~P = O(S3)
(6.la)

(6.1b)

and the auxiliary condition obtained in Section 5 is given by

(6.lc)
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Any set of functions F, <1>, G, f which satisfies (6.1) and some appropriate boundary conditions is
a solution of the generalized plane strain problem. These field equations are different from those
obtained by Green and Adkins [5] in the sense that the new stress function such as G is
introduced in (6.1).

If we assume that V' = 0, the stress function <1> becomes zero. In this case, (6.1a) and (6.2a)
are reduced to equations for determining the stress field in the sense of usual plane strain, but any
mathematical disadvantage may not occur in (6.1).

For a certain class of materials and for a given definite quantity of deformation, there may
exist cases where the following relation is satisfied

max {aiO *( yi)} = 0 *(y), j = 3,4,5, ...

where ai are the material constants which constitute higher order terms than 0 (y2) in (4.6), and
we have used a symbol"0 *" instead of the conventional symbol"0" in combination with a given
definite quantity y. For such cases some terms involved in error terms in (6.1) should be
considered.

7. AN APPLICATION TO AN INFINITE BODY WITH A CIRCULAR HOLE

The theory is illustrated for a circular hole in a body submitted by both uniform anti-plane
shear and arbitrary by-axial tension. It is convenient to consider F, <P and G as functions of the
complex variables z = X' + iX2 and z= Xl - iX\ i v-=-T instead of as functions of X' and X 2

•

In this case the differential equations (6.1) can be rewritten as

where

F.ntz + K,F.zzzF.z" + K 2F.zzzF.m + K 3(F. zzF.zm + F.zzF.zzzz) + K4<1>,zz<P." = O(S3)

<p.zz + Ks(<P,zF.zz, + <1>,zF.uz) + K6(P,u <P,zz + P,,,<1>,zz) = o(s')

G,zz = K 7 QF.zz +o(s')

(7.1a)

(7.1b)

(7.1c)

K I = 4M, + 3M2 +4M4(A + Ds), K 2 = M2 , K 3 = M, + M4(A + D,),
1

K 4 = 2M,. K, = 2M". K" = M7 , K7 A + D,. (7.2)

Assuming that <P = O(S2), we obtain the field equations for the classical plane strain problem as
follows:

P'zzzz + K,F,zzzF,z"" + K2 F.zzzP,,,,,z + K 3(P,zzF.zzz" + P,,,,,P'zzz") = O(S3) (7.3a)

<1>.z" + K,(<1>.zF.zzz + <1>,zp'zzz) + K"(P,zz<1>.zz + F.",<P. zz )= O(S4) (7.3b)

G.zz = K7 QP,zz +O(S'). (7.3c)

On the other hand, if we assume that F = O(S2), we obtain the field equations for the
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longitudinal shear problem such that

F.zzzz +K 4 <1>,zz<l>,z= = O(S3)

<I> ,z= = 0 (S 3)

G,zz = 0 (S4),
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(7.4a)

(7.4b)

(7.4c)

It is found from (7.4c) that in the case of the longitudinal shear problem in-plane stresses t""
become symmetric,

For conveniences in obtaining a solution, the stress functions are normalized in the form:

(n) (n) (n) en)

F = (Te F. <I> = Aue <1>, G = (Te G, Q = (Te Q (7.5)

where (Te is defined as the characteristic load and A denotes arbitrary constant which is
responsible for the magnitude of the applied longitudinal shear stress. The equations which
govern the normalized stress functions are given by

(n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n)

F,zzzz + HIE F,zzz F,zzz + H~E F,zzz F,e", + H 3E( F,zz F,zzzz + F,zz F,zzzz) + H 4E<I> ,zz <I> ,zz = 0 (S2)

where

(n) (n) (n) (n) (n) (n) (n) (n) (n)

<I> ,zz + HsE( <I>,z F ,zzz + <I> ,z F ,zzzl + H6E( F ,zz <I>,zz + F,zz <I> ,zz ) = 0 (s 2)

(n) (n)(n)

G,zz = H 7 EQ F,zz + 0(S2)

H· = (TeKi • = I 2 3 5 6 7 H = A2(TeK4

I , I """ 4E E

(Te
E=-=O(y)

Ka

(7.6a)
(7.6b)

(7.6c)

(7,7a)

(7.7b)

where K a denotes a reference material constant which we may take as Young's modulus. By the
definition the parameter E is found to be of 0 (y).

Since it is difficult to solve the nonlinear equation (7.6) explicitly, we shan apply the
perturbation method. We assume that the stress functions F, G, <I> are functions of the parameter
E which can be expanded as absolutely convergent series

(n) 'X (n) CXl (n) 'X (n) ex.

F = 2: EE\ <I> = 2: <l>iEi, G = 2: GiE\ Q= 2: Q/
i =0 i =0 i =0 i =0

(7.8)

Now the series (7.8) are substituted into (7.6), then the terms having equal powers of E are
collected and finally the coefficients of each power of E are set equal to zero. This process
provides a set of linear partial differential equations. The one corresponding to EO provides the
differential equations for the linear theory. They are

Fo,zzzz = 0

<l>o,z= = 0

Go,zz = 0

(7.9a)

(7.9b)

(7.9c)
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Since the stress tensor t;j is symmetric in the case of infinitesimal deformation, the function Go
can be set equal to zero.

From the coefficients of € we have

F.zz•• +HI Fo.zz,Fo.zzz +H2Fo.mFo.m +H3(Fo.zzFo.zuz +FO.iZFo.zzzi) +HAJo.zZct>O.£i =0 (7.l0a)

ct>1.ZZ +H 5(ct>0.zFo,zZf +ct>o.•Fo.zz.) +H 6(Fo.zz ct>o.zz +FO,iZ ct>o.zz) = 0 (7.l0b)

GI,z. = H7 QoFo.z" (7.10c)

The differential equations for the higher order terms are derived in a similar way. However the
corresponding stresses appear only in the error terms.

For this problem it is also convenient to assume expansions for stress and displacement
components, namely

ai> _ '" t ai> p t a3
-, '" t a3 p P - 0 1 2t - uC£.J €, - AUc £.J t, -", ...

p (pl p (pl

(7.11)

0,1,2, ... (7.12)

Further we introduce a polar coordinate system, where Z = rei9
• Let (V" Vo, V3) be the

displacement components expressed in the polar coordinates. Under the circumstances we obtain
the expressions of the displacement components in terms of the stress functions as follows:

rY3 ,r = 2D6 i(ct>,zz - ct>."z) +4i (2B 9 +B 1O)F.z. (ct>,zz - ct>,.z) +4iB 1O(ct>,zP,Uz - ct>,zF.zzz) + 0 (1 3)
(7.13a)

Y3•0 = - 2D6(<p,zz +<P,d) - 4(2B9 +BIO)F,zz(<P,zz +<P,.z) +4B IO(ct>,zF,z"z +ct>,,,P'zzz) +o(1 3
)

(7.13b)
r2Yr,r = 2(2B I - B5)P,zzzz +2{8B2+4B6 - 4A (A +D5)+ 4B3 +2B7 D52}F,z,F.zzzz

+2(4B3 +2B7 - D/)F,zzF,z.zz +2(2B4 - 2D/ - Bs)ct>,zct>.•zz - B5(F.zzz
2+F,••Z2)

+ 2{2B6 +2D5(A +D5)+2B7 - D/}F.Zi (F.zzZ2 +F.zzz2)+(2D6
2- Bs)

X(<P,zct>,zZ2 +<P.•ct>,zZ2) +B5i(G.zzz2- G,uz2
) +o()?) (7,13c)

x2

o-YOO O"yoo

t (F) t (F) t t (F) t (F) i
...- Tyzco Tyzco-

-
OXro OXco

Tyzco Tyzro --

Xl

CTyro o-YCO

Fig. I. Configuration and coordinate systems,
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r3(Yr + Ye.e) == 2(2B I - Bs)F,zzzz +2{8B2+4B6 4A (A +Ds)+4B3 +2B7 - D/}F,zzFzzzz
+2(4B3 +2B7 - DS

2) F.zzF"zz +2(2B4 - 2D6
2 Bs)<1>.z<1>,zzz +Bs(F zzz

2+F."Z2)
- 2{2B6 +2Ds(A +Ds)+2B7 - D/} F.,(Fzzz

2+F zzz2) (2D6
2- Bs) (<1>,z<1> .•Z2 +<1>.z<1>"Z2)

- Bsi(G,zzZ 2- G,,,Z2) +o(1 3
) (7.13d)

3( - Ye." - ) . 2 -2r Vr•e+-r- - Ve = - 2Bsl(F,zzz - F"z )

+4i{2B6 +2Ds(A +Ds)+2B7 - D/} Fz,(F,zzZ 2- F"Z2) +2i(2D6- Bs) (<1>,z <1>,zZ 2- <1>" <1>.zZ 2)
-2B5(G,zzZ2+G,zzZ2)+O(1\ (7,13e)

It should be noted that the displacement components must be single-valued functions of their
supports.

The stress functions must satisfy the boundary conditions. The stress free conditions on the
rim of the hole, i.e. on the circle r = a, are

FO•zzz
2= FO,,,,,Z2 = Fo,zzzz

2Fk,zzzz - Fk,zzZ 2- Fk,z=:i2+ UGk, zzz 2- Gk,'zZ2) == 0, k "" 1

- i(Fk,ZZZ 2- Fk,nZ2) - Gk ,zzZ 2+ 2Gk •z ,zz - Gk,,,Z2 == 0, k "" 1

The conditions at infinity are written by

FO,II = Kh FO,22 = K2, F O,12 =°
Fk ,22 + G k,12 = 0, Fk •11 - Gk ,12 = 0, - Fk ,12 + G•.22 = 0, Fk ,12 +Gk,11 = 0, k "" 1

<1>0,' = K3, <1>0,2 =0

where

(7. 14a)

(7. 14b)

(7.14c)

(7.14d)

(7.14e)

(7.14f)

(7, 14g)

(7.14h)

(7.15)

where ax~, ay~ and 7'yz= mean the intensity of the uniformly distributed stresses (II, (22 and (23 at
r ~ 00 respectively.

The solution based on the linear theory is derived from (7.9) with the boundary conditions
(7.14a, e, h) as follows:

where
K,- K2 KI + K2

l' = -4-' 12 == -4-'

(7.16a)

(7.16b)

(7.17)

(7.18)
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Substituting (7.16), (7.17) into (7.10), we obtain

a4 a6 a g 4(1 1) 6( 1 1)
F,zzt> +3"=3 Nt + ----;r:"4 N 2 +---s=5 N 3 +a --r-:4 +~ N4+a 3""=3 +5""=3 N szz zz zz zz zz zz zz

(7.19a)

(7.19b)

(7.19c)

where we have put

Nt = 4Ht'}',2 +4HkY/ +9'}'12) - 24'}' ,2H3 + K/H4 , N 2= '}'1\18H3 - 144H2)
N 3 = 144'}'t

2H2, N4= 6'}'t'}'2(H3 - 2H2), N s = 24'}"'}'2H2
N6= 6'}' t

2H 3, Ng = K3 ('}'tHs - 2'}'tH6 + '}'2H6), N 7 = K3'}'t(Hs +H6),
N 9 = 3K3'}'tH6, N lO = 4H7 '}' 12, N ll = 4H7 '}'1'}'2. (7.20)

Considering the fact that there is some freedom in the choice of the stress functions Ft, Gt, <1>1
and the condition that displacement components should be single-valued functions of their
supports, we obtain the solution for (7.19) with boundary conditions (7.14b, c, d, f, g) such that

R3 (Z Z) Rs( Z Z) _ P6 ( 1 1 )+- -+- +- -+- -P logzz +- -+-2 Z Z 12 Z3 Z3 2 20 Z4 Z4

G _a4NlO.(Z Z) N 2.(Z Z)----1--- + al---
1- 3 Z3 Z3 II Z Z

(7.21a)

(7.21 b)

where

(7.22)

The physical stress components defined in the cylindrical coordinate system are expressed in
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terms of the stress functions as follows:

rZt rr
= 2F.zzzz - F,zzzz - F...z z+ i(G.zzzz- G.zzz)

r4t""= 2F.zzzz + F.zzz z+ F...z z- i(G.zzz z- G...z z)

r3t rO
= - i(F.zzz z- F,..zz) + 2G.zzzz - G.zzz z- G zz

r3t"r = - i(F.zzz z- F...z z) - 2G.zzzz - (G.zzz z+ G zz)

rZt"3 = - <t>.zZ - <t>.zZ, rt r3 = i(<t>.zz - <t>.zz)

rt 3r
= i{l + (4qt + 2qz)F.zz} (<t>.zz - <t>.zz) + 2qzi(<t>.zF...z - <t>.zF.zzz)

rZt3" = - {I + (4qt + 2qz)F.zz} (<t>.zz + <t>.zz) + 2qz(<t>.zF...z + <t>.zF.zzz)

t 33
= 4clF.zz + q3F.zzF.zz + 8(cz - ctD5)F.zzF... + 4(C3 + 2D6 )<t>.z<t>.z

(7.23a)

(7.23b)

(7.23c)

(7.23d)

(7.23e)

(7.23f)

(7.23g)

(7.23h)
where

The stress distribution on the rim of the hole is of special interest for engineers. The physical
stress components on the circle r = a are given by

aZt"" 21: Z
-- = 4yz + 8yt cos 26 + 2 {7T1 + 7Tz + (27Tz - 7T5 - 7T6 + 2NlI a ) cos 26

(Tc a
+ (27T3 - 7T7 - 7Ts + 4NIOa z) cos 46} + 0 (yz)

tOr
E- = 81:(NlI sin 26 + N IO sin46)+ o(yz)

(Tc

(7.25a)

(7.25b)

(7.25c)

(7.25e)

(7.25f)

t
33

{- = 4ct(Yz + 2yt cos 26) + 41: c~ (7T1 + 27Tz cos 26 + 27T3 cos 46)
(Tc a

+ (q4 + q5)(yz + 2YI cos 26)z + AZq6 cosz 6} + o(yZ)
where

(
Nt Nz N3) Z (NlI N4 5 ) Z (N6 ) Z7Tt = - 4'" + 9 +16 a ,7Tz = - 2 + 4'" +"8 N 5 a ,7T3 = - 6 + N IO a ,

q5 = 2KT(CZ - ctD5), q6 = K u (C3 +2D6).

In the course of obtaining (7.25), we have put K3 = 1.

(7.26)



370 MASANAO SHlBUI

The functions Fn, Gn, <l>n, n ~ 2 can be formally solved in like manner. However, the
corresponding stresses appear only in the error terms in (7.25). If it is required to obtain the higher
order stresses, the more refined field equations should be employed instead of (6.1).

8. NUMERICAL ILLUSTRATION

As a special case of Section 8, we can consider the case where the magnitude of the applied
stress ty~ is equal to that of tzy = and the applied stress tx = is zero. In this case we can put KI = 1.
K2 = 0, A 1 and define the characteristic load as ty= or tZY~'

Next we consider how to determine the material constants which appear in nonlinear
constitutive equations. In the following the material constants which constitute the nonlinear
terms in stress-strain relations shall simply be called the nonlinear material constants. Generally
speaking, these material constants should be determined from tension test, shear test. etc. Since a
set of appropriate experimental data is not at hand, we may be obliged to invent such conditions
that the nonlinear material constants can be determined for illustration purposes.

If the deformation is small, it can be assumed from the variation of the complementary energy
function we obtain

E kl + 1 E kl mn (')'Yii = iiklS 2" iiklmnS S + 0 S (8.l)

where Eljkl is the linear material tensor and Eljklmn is the nonlinear material tensor. These material
tensors have the following symmetry relations:

(S.2a)

(8.2b)

Let us suppose that the tensor E,jklmn is decomposed with respect to the pair of tensor fields
E iikh hi' Here hi is a symmetric tensor which may later be determined. It is easily seen that this
decomposition leads to

Eiiklmn (a, {3, -y) = a (Eiik,fmn + Ek1m,Ji; + Emni;/ki )+ {3 (E,;km!nl + Ekmn./ii + Enliijkm +Eiiknjlm +Eknlmjii

+ Elmii!kn +E;ki./mn + Eilmnhk +EmniJil + Ekijljmn +Ejlm,Jk, + Emnkihl + Eklirnhn

+ Eimj,Jkl +EjnkJ,m +Eklinhm +E,njm/'l +EjmkJ,n)+ -y(Ejkimjnl + Eimn./ki + En,kif;m

+ Ejkin/.m + Einlmhk + E'mjJ,n +Ekiim!nl + EjmnI/ki + Enlkihm + Ekiinhm + EJnlm!ki

+ Elmk,fin + EllimAn + Ejmk,Jil + Ekniljim +Ej,kmf;n +Ekminfil + E",jljkm + Eilinjkm

+ Einkm!iI +Ekmilhn + Ej,knf;m + Eknimhl + Eimi,fkn ) (8.3)

where

(8.4)

In the case of transverse isotropy, we may write down the following suppositions.
Supposition 1. In the case of i, j, k, I, m, n <: 3, the nonlinear material tensor E,jklmn is given by

In other cases, this tensor is

E'iklmn = Eijklrnn (ex, {3, f3). (8.5a)
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where ao, f3o, a and f3 are the constants which may be determined later.
Supposition 1 is the necessary condition for the following equations to hold;
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(8.5b)

E 111133 = E222233, E 331313 = E332323, E333311 = E333322, EI1I212 = E 221212 , Ell 1122= E1I2222,

Ell 1313 - EI12323 = 2E131223, E III133 - E112233 = 2E331212, Ell 1111 = Ell I 122 +4EIlIlII • (8.6)

Supposition 2. The symmetric tensor f,j is given by

(8.7)

Such components of the tensor Eijklmn as E 121212 must be equal to zero in the case of transverse
isotropy. This requires Supposition 2.

In the case of uniaxial tension, we find from (8.1) that the ratio of the lateral contraction to the
negative of the longitudinal extension becomes

(8.8a)

where u is the magnitude of the tensile stress. Similarly we have

(8.8b)

The ratios v:(a), a = 1,2 reduce to the classical values of Poisson's ratios Va when the tensile
stress u is sufficiently small.

If u is fairly large and if the magnitude of u is sufficient for the yield strength, the ratios v:
may be considered to reduce to 0·5.

In this section, however, we confine our attention to the case where the ratios v:(a) are
assumed to be independent of the tensile stress u within the error of o ('}'3). If the second order
terms are very small compared with the first order terms in (8.8), the ratios v:(a) are rewritten in
the form:

'( )_ {I + I (E221l11 EI11I1I)} + (2) '() _ {I +1(E33111l E333333)} + ( 2)VI a - VI - -- -- a 0 u , V2 a - V2 - ----- a 0 a .
2 E 22I1 E 111l 2 E 3311 E3333 (8.9)

If the ratios v: are independent of the stress u under the circumstances the following equations
are obtained:

E 221111--= -v,
E 111111

E 331111--== -v..,
E333333 -'

(8.10a)

(8. lOb)
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Table 1. Linear elastic constants t (10 -, cm'/kg)

D, D, D, D. D, Do
4·902 - 1.471 - 1.428 5·519 6·373 6·898

tThe italic numbers are assumed values.

Table 2. Linear elastic constants (10-' em'/kg)

D, D, D, D. D, Do
40902 -1-471 -1'471 4·902 (,·373 (,·373

Supposition 3. When the deformation is relatively small, the equations (8.10) hold within the
error of 0el).

If the material is incompressible under hydrostatic loading, Supposition 3 is in good
agreement with the result reported by Orthwein [7].

With the aid of Supposition 1-3, we can determine such constants as a, {3, ao, (3o. That is, they
are determined from the following equations:

3(a + l4(3)E llllfll = EIIIIII

a(EIIII + 2E Il22)fl I+2{3(EIIII +6E lw +2E ll dfll = - vlEIIIIII

3(ao+ 14{3o)E3333h3 = E 333333

ao(EIII d33 + 2E Il3J!II) + 2{3o(E III d33 + 6EI3I3fli + 2E Il33fll) = - v 2 Em333

(8.11a)

(8.11b)

(8.11c)

(8.11d)

In particular, the nonlinear material tensors E 111111 and E333333 are directly determined from
stress-strain curves in the directions parallel to Xl and X 3 axes respectively.

7

6

'" 4'"~
if)

3

2

/
-- LongL tension. j'
--- Trans.tenslon I'

/
/

/
/

/
I

/;

i
i

l
O'---~--+---~-----"~-~

o 2 3 4 5 x10-3
Strain

Fig. 2. Stress-strain diagrams for Cr-Ni steel.



A simplified nonlinear theory of the generalized plane strain

Then the nonlinear material constants are given by

3a3 = 4EI22331' 2alO = 2E II1212 - 4E I2233" 6al8 = Ell 1222 - 2EII1212 +4E 12233 "
2a2l = E 112233 - E 111122 + 2E1I1212 - 4E I2233" a13 = 2E III313 - 2E111212,
2a23 = E II333 - 4EII1212 - 2EII2233 + 2EII I 122 +8E 122331 ,

2al4 = Ell 1133 - 2E1I1212 - E 1I2233 + 4E I2233"
an = 2E331313 - Ell 1133 + 2E111212 + E II2233 - 4E122331 - 2EII1313 ,

6al9 = E333333 - 3E IIII33 - E II2211 + 8EII1212 - 3E1I3333 +6E II2233 - 24EI22331.
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(8.12)

In order to carry out some numerical calculations, let us use the experimental data on
Cr-Ni steel [9].

Since these data are varied for the plate which have a thickness of 0·051 cm, there are some
problems in applying these data to the present investigation. Here we don't consider the
difference between the material constants for design and those used in the present illustrations,
because the aim of some numerical calculations is to show the second order effect on the stress
concentration factor qualitatively.

---- Isotropy

--Transverse Isotropy.

3.0 "-
"

"-
............................

20

'- Ks

-'------

2.30

2.28

2.26

"'"
224

2.22

220

I 0 L--__---+-----+--+__---' 1.80
o 2 4 6 8 10

x10-3

OC/Et

Fig. 3. Stress concentration factors K n • K,.

The stress-strain curves for Cr-Ni steel may be approximated in the form:

y = ;, + 19·68 (;,r+o(y3)for longitudinal tension

y = ;, +19·66 (;,r+ 0 (y3) for transverse tension

(8. 13a)

(8.13b)

where (J is nominal stress, y is strain and E I and E, are Young's moduli in the longitudinal and
transverse directions respectively.

If transverse and longitudinal directions are taken as directions parallel to Xl and X 3 axes
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respectively, the components E 111111, E 333333 of the nonlinear material tensor Eijklmn are given by

2 x 19·66
E111111 = E/ '

2 x 19·68
E333333 = E/ (8.14)

In the remainder of the discussion, K~ shall be defined as E" and we shall assume that the
elastic properties of Cr-Ni steel are given by Table 1.

The stress-strain curves approximated by (8.13) are illustrated in Fig. 2.
Let us define the stress concentration factors K n , K,

K = amax
n ,

ayx
K = Tmax

" Tyz:x;

(8.15)

where amax and Tmax are the maximum values of normal stress and of longitudinal shear stress
respectively. The relation between these factors and the applied stress ac / E, is shown in Fig. 3.

In order to investigate the effect of transverse isotropy on the stress distributions on r = a, we
shall consider an assumption material which may be assumed to be isotropic and to have the
stress-strain curve given by (8.13b) and the elastic properties listed in Table 2. Under the
circumstances, the comparison between the isotropic material and the transversely isotropic
materials is also shown in Fig. 3. It is found from Fig. 3 that stress concentration factors decrease
monotonously as the nondimensional applied stresses increase. and that these factors decrease
more rapidly in the case of transverse isotropy than in the case of isotropy.

The longitudinal shear stress becomes maximum on the plane which is generated by rotating
the X 3 = constant plane through an angle a about the axis XI. This value of a is plotted against
ac / E, in Fig. 4. The corresponding maximum stress occurs at (a, 0) on the plane inclined at
a + 71'/4 from the X 3

= constant plane.
In Fig. 5 stress distributions on r = a are illustrated for a c / E, = 0·005. In particular the stress

component t Br is the second order stress, and so t Br is considered to be nonlinear effect. It is
interesting to note that the effect of the second order stress on the stress distributions on r = a is

14 ,, -- Transverse Isotropy.,,
---- Isotropy.,,

"
12

:"0-,,
0 "tl ,
, ",

"10 ",,,
"

8
0 2 4 6 8 10

OC/Et
x 10-3

Fig. 4. The value of a in degree.
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I=t/oc oc
Ei"= 0.005

-1.0 0.0 1.0 2.0
(r= a)

Fig. 5. Stress distributions on r = a for Ir,IE, = 0·005.

OC/Et =0.005

r= t/CTc --Transverse Isotropy.

--- Isotropy.

I
-1.0 0.0 1.0 20 3.0 X

(r = a)

Fig. 6. The effect of transverse isotropy on the stress distributions on r = a.

fairly large, and so such stress as t Br can not be necessarily neglected in the nonlinear plane strain
problems.

The effect of transverse isotropy on the stress distributions of t BB and t 33 on r "" a is shown in
Fig. 6. It may be observed from Fig. 6 that in this case the effect of anisotropy on the stress
distributions on r "" a is fairly large.
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